Меню

Главная
Случайная статья
Настройки
Тета-функция
Материал из https://ru.wikipedia.org

Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля[1].

Наиболее распространённый вид тета-функций — это функции, встречающиеся в теории эллиптических функций. По отношению к одной из комплексных переменных (обычно обозначаемой z) тета-функция имеет свойство, выражающееся в сложении периодов ассоциированных эллиптических функций, что делает их квазипериодическими[англ.]. В абстрактной теории это получается из условия линейного расслоения[англ.] понижения[англ.].

Содержание

Тета-функция Якоби

Имеется несколько связанных функций, которые называются тета-функциями Якоби, и много различных и несовместимых систем их обозначения. Одна тета-функция Якоби (названа именем Карла Густава Якоби), это функция, определённая от 2 комплексных переменных


где и . Функция является формой Якоби[англ.]. Если фиксировать , функция становится рядом Фурье для периодической целой функции от


Функция ведёт себя очень регулярно с учётом квазипериода и удовлетворяет функциональному уравнению


где

Вспомогательные функции

Тета-функция Якоби, определённая выше, иногда рассматривается вместе с тремя дополнительными тета-функциями и в этом случае записывается с дополнительным индексом 0:


Дополнительные (полупериодичные) функции определяются формулами


Этим обозначениям следовали Риман и Мамфорд. Первоначальная формулировка Якоби была в терминах нома[англ.] , а не . В обозначениях Якоби


Приведённые выше определения тета-функции Якоби далеко не единственные. См. статью Тета-функции Якоби (вариации обозначений)[англ.] с дальнейшим обсуждением.

Если мы положим в тета-функциях выше, мы получим четыре функции, зависящие только от и определённые на верхней полуплоскости (которые иногда называются тета-константами.) Они могут быть использованы для определения различных модулярных форм и для параметризации некоторых кривых.

Тождества основная

Так называемые функции «тета-нульверт» (Theta-Nullwert) имеют следующее представление суммы и следующее представление произведения:


Тета-функция удовлетворяет следующему основному соотношению с «номеном q»:


Следующие 2 формулы определяют полный эллиптический интеграл 1-го типа и согласуются друг с другом:


Тождества Якоби

В частности Тождества Якоби определяется следующей формулой:


Эта формула представляет собой кривой Ферма 4 степени.

Тождества Якоби также возникает как комбинация 3 квадратичных соотношений:


Объединение этих 3 формул даёт следующую формулу:


Тождества Якоби описывают, как тета-функции преобразуются модулярной группой, которая порождается отображениями и . Тождества для первого преобразования найти легко, поскольку добавление единицы в показателе к имеет тот же эффект, что и добавление к


Тогда


Тета-функции в терминах нома

Вместо выражения тета-функций в терминах


Мы видим, что тета-функции можно определить в терминах

Представления произведений

Тройное произведение Якоби (специальный случай тождеств Макдональда[англ.]) говорит нам, что для комплексных чисел w и q с и мы имеем


Это можно доказать элементарными средствами, как, например, в книге Харди и Райта An Introduction to the Theory of Numbers[англ.].

Если мы выразим тета-функцию в терминах томов и , то


Мы поэтому получаем формулу произведения для тета-функции вида


В терминах w и q:


где является q-символом Похгаммера, а является q-тета-функцией[англ.]. Если раскрыть скобки, тройное произведение Якоби получит вид


что можно также переписать в виде


Эта формула верна для общего случая, но представляет особый интерес при вещественных z. Аналогичные формулы произведений для дополнительных тета-функций


Интегральные представления

Тета-функции Якоби имеют следующие интегральные представления:


Явные значения

Лемнискатические значения

См. статью Джинхи Йи (2004)[2].


В следующей таблице приведены лемнискатические значения функций (x) и (x):
x (x) (x)


Дополнительные значения для (x):


И с греческой буквой показано Золотое сечение. Символом обозначена постоянная Гаусса, которая представляет собой отношение лемнискатической константы к числу . Только что показанные значения были исследованы южнокорейским математиком Джинхи Йи из Пусанского национального университета ( ). Их результаты впоследствии были опубликованы в Журнале математического анализа и приложений. Кроме того, применяются следующие значения:


Эти 2 значения можно определить непосредственно с помощью формулы суммы Пуассона:


Эквиангармонические значения

Функция имеет следующие эквиангармонические значения функции:


Некоторые эквиангармонические значения тета-функции были исследованы, в частности, математиками Брюсом Карлом Берндтом и Орсом Ребаком.

Значения тета над факториалами восьмых

Значения функции вида :


Некоторые тождества с рядами

Следующие 2 тождества для рядов были доказаны Иштваном Мезо[3]:


Эти отношения выполняются для всех 0 < q < 1. Фиксируя значения q, мы получим следующие свободные от параметров суммы


Нули тета-функций Якоби

Все нули тета-функций Якоби являются простыми нулями и задаются следующим образом:
,


где m, n являются произвольными целыми.

Связь с дзета-функцией Римана

Соотношение


использовал Риман для доказательства функционального уравнения для дзета-функции Римана посредством преобразования Меллина


и можно показать, что преобразование инвариантно относительно замены s на 1 s. Соответствующий интеграл для z 0 дан в статье о дзета-функции Гурвица.

Связь с эллиптической функцией Вейерштрасса

Тета-функции использовал Якоби для построения (в виде, приспособленном для упрощения вычислений) его эллиптических функций как частные вышеприведённых 4 тета-функций, и он мог их использовать также для построения эллиптических функций Вейерштрасса, поскольку
,


где вторая производная берётся по z, а константа c определена так, что ряд Лорана функции (z) в точке z = 0 имеет нулевой постоянный член.

Связь сq-гамма функцией

Четвёртая тета-функция – а тогда и остальные – неразрывно связана с q-гамма-функцией Джексона[англ.] соотношением[4].


Связь с эта-функцией Дедекинда

Пусть эта-функция Дедекинда, а аргумент тета-функции представлен как ном[англ.] . Тогда


и


См. также статью о модулярных функциях Вебера.

Эллиптический модуль

J-инвариант равен
,


дополнительный эллиптический модуль равен


Решение теплового уравнения

Тета-функция Якоби является фундаментальным решением одномерного уравнения теплопроводности с пространственными периодическими граничными условиями[5]. Принимая вещественным, а с вещественным и положительным t, мы можем записать
,


что решает уравнение теплопроводности


Это решение в виде тета-функции является 1-периодическим по x, и при оно стремится к периодической дельта-функции или гребню Дирака в смысле распределений
.


Общие решения для задачи с пространственными периодическими начальными значениями для уравнения теплопроводности могут быть получены путём свёртки начальных данных в с тета-функцией.

Связь с группой Гейзенберга

Тета-функция Якоби является инвариантом при действии дискретной подгруппы группы Гейзенберга. Эта инвариантность представлена в статье о тета-представлении[англ.] группы Гейзенберга.

Обобщения

Если F является квадратичной формой от n переменных, то тета-функция, связанная с F, равна


с суммой по решётке целых чисел n. Эта тета-функция является модулярной формой с весом (на надлежащим образом определённой подгруппе) модулярной группы. В разложении в ряд Фурье


числа называются числами представления формы.

Тета-функция Рамануджана

Риманова тета-функция

Пусть


является множеством симметричных квадратных матриц, мнимая часть которых положительно определена. n называется верхним полупространством Зигеля[англ.] и является многомерным аналогом верхней полуплоскости. n-Мерным аналогом модулярной группы является симплектическая группа Sp(2n,). Для . Роль n-мерного аналога конгруэнтных подгрупп играет


Тогда, если дано , тета-функция Римана определяется как


Здесь является n-мерным комплексным вектором, а верхний индекс T означает транспонирование. Тета-функция Якоби является тогда частным случаем с и , где является верхней полуплоскостью.

Тета-функция Римана сходится абсолютно и равномерно на компактных подмножествах .

Функциональное уравнение функции


которое выполняется для всех векторов и для всех }} и .

Ряд Пуанкаре

Ряд Пуанкаре[англ.] обобщает тета-ряд на автоморфные формы применительно к произвольным фуксовым группам.

Уравнения пятой степени

Решение формы Бринга-Джеррарда

Согласно Теореме Абеля-Руффини общее уравнение 5 степени не может быть решено в элементарной радикальной форме. Но общее решение вполне возможно с помощью эллиптических функций. С тета-функцией общий случай Уравнения 5 степени также может быть решен как функция эллиптического «номена q» из эллиптического модуля, который всегда «элементарен» в зависимости от коэффициентов. Для следующего уравнения пятой степени в форме Бринга-Джеррарда общее решение может быть представлено в упрощенной форме тета-функцией :


Для всех реальных значений имеет показанную сумму функции пятой степени и идентичную функцию отображения для в зависимости от точно реальное решение. И это фактическое решение может для всех действительных значений может быть вызвано точно по следующему алгоритму:
Mtodo de resolucin de las ecuaciones qunticas a travs de la funcin theta
Уравнение Бринга – Джеррарда:

Значение эллиптической функции «Номен q»:

Актуальное решение для :



3 примера расчёта

Ниже в качестве примеров рассматриваются 3 уравнения, которые можно решить с помощью тета-функции Якоби, но вообще нельзя решить с помощью элементарных корневых выражений:


Тот же образец процедуры применяется в следующем уравнении:


Это 3 пример:


Примечания
  1. Тюрин, 2003.
  2. Yi, 2004, с. 381–400.
  3. Mez, 2013, с. 2401–2410.
  4. Mez, 2012, с. 692–704.
  5. Ohyama, 1995, с. 431–450.


Литература
  • Yousuke Ohyama. Differential relations of theta functions // Osaka Journal of Mathematics. — 1995. — Т. 32, вып. 2. — С. 431–450. — ISSN 0030-6126.
  • Milton Abramowitz, Irene A. Stegun. sec. 16.27ff. // Handbook of Mathematical Functions. — New York: Dover Publications, 1964. — ISBN 0-486-61272-4.
  • Ахиезер Н. И. Элементы теории эллиптических функций. — Москва: «Наука» Главная редакция физико-математической литературы, 1970. — (Физико-математическая библиотека инженера). — ISBN 0-8218-4532-2.
  • Hershel M. Farkas, Irwin Kra. ch. 6 // Riemann Surfaces. — New York: Springer-Verlag, 1980. — ISBN 0-387-90465-4.. (обсуждение тета-функции Римана)
  • Hardy G. H., Wright E. M. An Introduction to the Theory of Numbers. — 4th. — Oxford: Clarendon Press, 1959.
  • David Mumford. Tata Lectures on Theta I. — Boston: Birkhauser, 1983. — ISBN 3-7643-3109-7.
  • James Pierpont. Functions of a Complex Variable. — New York: Dover Publications, 1959.
  • Harry E. Rauch, Hershel M. Farkas. Theta Functions with Applications to Riemann Surfaces. — Baltimore: Williams & Wilkins, 1974. — ISBN 0-683-07196-3.
  • William P. Reinhardt, Peter L. Walker. Theta Functions // NIST Handbook of Mathematical Functions / Frank W. L. Oliver, Daniel M. Lozier, Ronald F. Boisvert, Charles W. Clark. — Cambridge University Press, 2010. — ISBN 978-0521192255,.
  • Whittaker E. T., Watson G. N. ch. 21 // A Course in Modern Analysis. — 4th. — Cambridge: Cambridge University Press, 1927. (история -функций Якоби)
  • Jinhee Yi. Theta-function identities and the explicit formulas for theta-function and their applications // Journal of Mathematical Analysis and Applications. — 2004. — Т. 292. — С. 381–400. — doi:10.1016/j.jmaa.2003.12.009.
  • Istvn Mez. A q-Raabe formula and an integral of the fourth Jacobi theta function // Journal of Number Theory. — 2012. — Т. 133, вып. 2. — С. 692–704. — doi:10.1016/j.jnt.2012.08.025.
  • Istvn Mez. Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions // Proceedings of the American Mathematical Society. — 2013. — Т. 141, вып. 7. — С. 2401–2410. — doi:10.1090/s0002-9939-2013-11576-5.


Литература для дальнейшего чтения
  • Тета-функции, Якоби эллиптические функции // Математическая энциклопедия / Виноградов И. В.. — Советская энциклопедия, 1985. — Т. 5. — (Энциклопедии, словари, справочники).
  • Прасолов В. В., Соловьёв Ю. П. Алгебраические уравнения и тета-функции. — М.: МК НМУ, 1994.
  • Hershel M. Farkas. Theta functions in complex analysis and number theory // Surveys in Number Theory / Krishnaswami Alladi. — Springer-Verlag, 2008. — Т. 17. — С. 57–87. — (Developments in Mathematics). — ISBN 978-0-387-78509-7.
  • Bruno Schoeneberg. IX. Theta series // Elliptic modular functions. — Springer-Verlag, 1974. — Т. 203. — С. 203–226. — (Die Grundlehren der mathematischen Wissenschaften). — ISBN 3-540-06382-X.
  • Тюрин А. Н. Квантование, классическая и квантовая теория поля и тета-функции. — М., 2003.
  • E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge University Press, 1927. (See chapter XXI for the history of Jacobi's functions)
  • Jonathan Borwein und Peter Borwein: and the AGM: A study in Analytic Number Theory and Computational Complexity. Wiley-Interscience, 1987. pages 94–97.
  • Jonathan Borwein, Peter Borwein: Theta Functions and the Arithmetic-Geometric Mean Iteration. Ch. 2 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pages 33–61, 1987.
  • Nickos Papadatos: The characteristic function of the discrete Cauchy distribution. Kapodistrias-Universitt Athen, 2018, Arxiv.
  • Srinivasa Ramanujan: Modular Equations and Approximations to . Quart. J. Pure. Appl. Math. Volumen 45, 350–372, 1913–1914.
  • Nikolaos Bagis: On the complete solution of the general quintic using the Rogers-Ramanujan continued fraction. Arxiv 2015.
  • Jinhee Yi: Theta-function identities and the explicit formulas for theta-function and their applications. Journal of Mathematical Analysis and Applications, Band 292, Nr. 2, 2004, pages 381–400.
  • G. P. Young: Solution of Solvable Irreducible Quintic Equations, Without the Aid of a Resolvent Sextic. In: Amer. J. Math. Band 7, pages 170–177, 1885.
  • C. Runge: ber die auflsbaren Gleichungen von der Form. In: Acta Math. Volume 7, pages 173–186, 1885, doi:10.1007/BF02402200.
  • F. Brioschi: Sulla risoluzione delle equazioni del quinto grado: Hermite – Sur la rsolution de l’quation du cinquime degr Comptes rendus. N. 11. Mars. 1858. doi:10.1007/bf03197334 (zenodo.org).


Ссылки
Downgrade Counter