Меню

Главная
Случайная статья
Настройки
Правильный четырёхмерный многогранник
Материал из https://ru.wikipedia.org

Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

Правильные 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века, хотя полное множество было открыто много позже.

Существует шесть выпуклых и десять звёздчатых правильных 4-мерных многогранников, в общей сумме шестнадцать.

Содержание

История

Выпуклые 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века. Шлефли обнаружил, что существует ровно шесть таких тел.

Шлефли нашёл также четыре правильных звёздчатых 4-мерных многогранника большой стодвадцатиячейник[англ.], большой звёздчатый стодвадцатиячейник[англ.], великий шестистотячейник[англ.] и большой великий звёздчатый стодвадцатиячейник. Он пропустил оставшиеся шесть, поскольку он не разрешал нарушения эйлеровой характеристики на ячейках или вершинных фигурах (F  E + V = 2). Это исключает ячейки и вершинные фигуры, такие как {5,5/2} и {5/2,5}.

Эдмунд Гесс (1843–1903) опубликовал полный список в своей книге на немецком Einleitung in die Lehre von der Kugelteilung mit besonderer Bercksichtigung ihrer Anwendung auf die Theorie der Gleichflchigen und der gleicheckigen Polyeder (Введение в учение о делении поверхности шара с особым учётом его применения в теории равногранных и равноугольных многогранников) в 1883.

Построение

Существование правильного 4-мерного многогранника ограничено существованием правильных (3-мерных) многогранников , которые образуют его ячейки и ограничивают двугранный угол


чтобы ячейки представляли собой замкнутые 3-мерные поверхности.

Шесть выпуклых и десять звёздчатых многогранников, описываемых здесь, авляются единственными решениями, удовлетворяющими ограничениям.

Существует четыре невыпуклых символа Шлефли {p,q,r}, имеющие допустимые ячейки {p,q} и вершинные фигуры {q,r}, которые проходят тест на диэдральный угол, но которые не дают конечные фигуры — {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}.

Правильные выпуклые 4-мерные многогранники

Правильные выпуклые 4-мерные многогранники являются четырёхмерными аналогами платоновых тел в трёхмерном пространстве и выпуклых правильных многоугольников в двумерном.

Пять из них можно понимать как близкие аналоги платоновых тел. Существует одна дополнительная фигура, двадцатичетырёхъячейник, которая не имеет близкого трёхмерного эквивалента.

Каждый выпуклый правильный 4-мерный многогранник ограничен множеством 3-мерных ячеек[англ.], которые являются платоновыми телами одного типа и размера. Ячейки соприкасаются друг с другом по граням, образуя правильную структуру.

Свойства

Следующие таблицы перечисляют некоторые свойства шести выпуклых правильных 4-мерных многогранников. Группы симметрии этих 4-мерных многогранников все являются группами Коксетера и даны в данной статье. Число, следующее за названием группы, равно порядку группы.
Имена Рисунок Семейство Шлефли
Коксетер
Вершин Рёбра Грани Ячейки[англ.] Верш.
фигура
Двой-
ственный
Группа симметрии
пятиячейник
пятигранник
4-симплекс
n-симплекс
(Семейство An)
{3,3,3}
5 10 10
{3}
5
{3,3}
{3,3} (самодвой-
ственный)
A4
[3,3,3]
120
восьмиячейник
тессеракт
4-куб
n-куб
(Семейство Bn)
{4,3,3}
16 32 24
{4}
8
{4,3}
{3,3} 16-ячейник B4
[4,3,3]
384
шестнадцатиячейник
4-ортоплекс
n-ортоплекс
(Семейство Bn)
{3,3,4}
8 24 32
{3}
16
{3,3}
{3,4} 8-ячейник B4
[4,3,3]
384
двадцатичетырёхъячейник
октаплекс
полиоктаэдр (pO)
Семейство Fn {3,4,3}
24 96 96
{3}
24
{3,4}
{4,3} (самодвой-
ственный)
F4
[3,4,3]
1152
стодвадцатиячейник
додекаконтихорон
додекаплекс
полидодекаэдр (pD)
n-пятиугольный многогранник
(Семейство Hn)
{5,3,3}
600 1200 720
{5}
120
{5,3}
{3,3} 600-ячейник H4
[5,3,3]
14400
шестисотъячейник
тетраплекс
политетраэдр (pT)
n-пятиугольный многогранник
(Семейство Hn)
{3,3,5}
120 720 1200
{3}
600
{3,3}
{3,5} 120-ячейник H4
[5,3,3]
14400


Джон Конвей является сторонником имён симплекс, ортоплекс, тессеракт, октаплекс или полиоктаэдр (pO), додекаплекс или полидодекаэдр (pD) и тетраплекс или политетраэдр (pT) [1].

Норман Джонсон является сторонником имён n-ячейник или пентахорон, тессеракт или октахорон, гексадекахорон, икоситетрахорон, гекатоникосаэдр (или додекаконтахорон) и гексакосихорон.[2][3][4]

Характеристика Эйлера для всех 4-мерных многогранников равна нулю. Имеется 4-мерный аналог формулы Эйлера для многогранников:


где Nk означает число k-граней в многограннике (вершина является 0-гранью, ребро является 1-гранью, и т.д.).

Визуализация

Следующая таблица показывает некоторые 2-мерные проекции 4-мерных многогранников. Различные другие визуализации можно найти во внешних ссылках. Графы диаграмм Коксетера — Дынкина также даны ниже символа Шлефли.
A4 = [3,3,3] BC4 = [4,3,3] F4 = [3,4,3] H4 = [5,3,3]
Пятиячейник 8-ячейник 16-ячейник 24-ячейник 120-ячейник 600-ячейник
{3,3,3} {4,3,3} {3,3,4} {3,4,3} {5,3,3} {3,3,5}
3-мерные ортографические проекции

тетраэдральная
оболочка

(центрировано по ячейке/вершине)

кубическая
оболочка

(центрировано по ячейке)

кубическая
оболочка

(центрировано по ячейке)

кубооктаэдральная
оболочка

(центрировано по ячейке)

Усечённый
ромбический
ромботриаконтаэдр
[англ.]
(центрировано по ячейке)

пентакиикоси-
додекаэдральная оболочка
[англ.]
(центрировано по ячейке)
Каркасы диаграмм Шлегеля (Перспективная проекция)

центрировано по ячейке

центрировано по ячейке

центрировано по ячейке

центрировано по ячейке

центрировано по ячейке

центрировано по вершине
Каркасы стереографических проекций (3-сфера)


Правильные звёздчатые 4-мерные многогранники (Шлефли–Гесса)

Четырёхмерные многогранники Шлефли–Гесса — полный список десяти правильных самопересекающихся звёздчатых четырёхмерных многогранников [5]. Многогранники названы по именам открывателей — Людвига Шлефли и Эдмунда Гесса. Каждый многогранник представлен символом Шлефли {p,q,r}, в котором одно из чисел — 5/2. Многогранники аналогичны правильным невыпуклым многогранникам Кеплера — Пуансо.

Имена

Имена, приведённые здесь, даны Джоном Конвеем и расширяют имена Кэли для многогранников Кеплера — Пуансо — к модификаторам stellated (звёздчатый) и great (большой) он добавил grand (великий). Конвей определил следующие операции:
  1. stellation (образование звёздчатой формы) заменяет рёбра на более длинные на тех же прямых. (Пример — пятиугольник преобразуется в пентаграмму)
  2. greatening (увеличение) заменяет грани на грани большего размера на тех же плоскостях. (Пример — икосаэдр увеличивается в большой икосаэдр)
  3. aggrandizement (возвеличивание) заменяет ячейки большими в тех же 3-мерных пространствах. (Пример — 600-cell возвеличивается в великий 600-ячейник[англ.])


Имена по Конвею для 10 форм из 3 4-мерных многогранников с правильными ячейками — pT=polytetrahedron (политетраэдр) {3,3,5} (тетраэдральный шестисотячейник), pI=polyicoshedron (полиикосаэдр) {3,5,5/2} (икосаэдральный стодвадцатиячейник[англ.]) и pD=polydodecahedron (полидодекаэдр) {5,3,3} (додекаэдральный стодвадцатиячейник) с модифицирующими приставками g, a и s для great (большой), grand (великий) и stellated (звёздчатый). Конечная звёздчатая форма, great grand stellated polydodecahedron (большой великий звёздчатый полидодекаэдр), тогда получит обозначение gaspD.

Симметрия

Все десять полихоров имеют [3,3,5] (H4) гексакосихорную симметрию[англ.]. Они генерируются шестью связанными группами симметрии рационального порядка тетраэдров Гурса — [3,5,5/2], [5,5/2,5], [5,3,5/2], [5/2,5,5/2], [5,5/2,3] и [3,3,5/2].

Каждая группа имеет 2 правильных звёздчатых многогранников, за исключением двух самодвойственных групп, содержащих по одному многограннику. Таким образом, имеется 4 двойственные пары и 2 самодвойственные формы среди десяти правильных звёздчатых многогранников.

Свойства

Примечание:

Ячейки (3-мерные многогранники), их грани (многоугольники), многоугольные рёберные фигуры[англ.] и многогранная вершинные фигуры представлены их символами Шлефли.
Название
Аббревиатура
Конвея
Ортогональная
проекция
Шлефли
Коксетер
Ячейки[англ.]
{p, q}
Грани
{p}
Рёбра
{r}
Вершины
{q, r}
Плот-
ность
[англ.]
Икосаэдральный стодвадцатиячейник[англ.]
полиикосаэдр (pI)
{3,5,5/2}
120
{3,5}
1200
{3}
720
{5/2}
120
{5,5/2}
4 480
Малый звёздчатый стодвадцатиячейник[англ.]
звёздчатый
полидодекаэдр
(spD)
{5/2,5,3}
120
{5/2,5}
720
{5/2}
1200
{3}
120
{5,3}
4 480
Большой стодвадцатиячейник[англ.]
большой
полидодекаэдр
(gpD)
{5,5/2,5}
120
{5,5/2}
720
{5}
720
{5}
120
{5/2,5}
6 0
Великий стодвадцатиячейник[англ.]
великий
полидодекаэдр (apD)
{5,3,5/2}
120
{5,3}
720
{5}
720
{5/2}
120
{3,5/2}
20 0
Великий звёздчатый стодвадцатиячейник[англ.]
большой звёздчатый
полидодекаэдр (gspD)
{5/2,3,5}
120
{5/2,3}
720
{5/2}
720
{5}
120
{3,5}
20 0
Великий звёздчатый стодвадцатиячейник[англ.]
большой звёздчатый
полидодекаэдр
(aspD)
{5/2,5,5/2}
120
{5/2,5}
720
{5/2}
720
{5/2}
120
{5,5/2}
66 0
Большой великий стодвадцатиячейник[англ.]
большой великий полидодекаэдр (gapD)
{5,5/2,3}
120
{5,5/2}
720
{5}
1200
{3}
120
{5/2,3}
76 480
Большой икосаэдральный стодвадцатиячейник[англ.]
большой
полиикосаэдр
(gpI)
{3,5/2,5}
120
{3,5/2}
1200
{3}
720
{5}
120
{5/2,5}
76 480
Великий шестисотъячейник[англ.]
великий
политетраэдр
(apT)
{3,3,5/2}
600
{3,3}
1200
{3}
720
{5/2}
120
{3,5/2}
191 0
Большой великий звёздчатый стодвадцатиячейник
большой великий звёздчаты
полидодекаэдр
(gaspD)
{5/2,3,3}
120
{5/2,3}
720
{5/2}
1200
{3}
600
{3,3}
191 0


См. также

Примечания
  1. Conway, 2008.
  2. Джонсон предложил также термин полихорон для названия 4-мерных многогранников как аналог трёхмерных многогранников (polyhedron) и двумерных многоугольников (polygon) как производная от греческих слов ("много") и ("пространство", "помещение")
  3. "Convex and abstract polytopes", Programme and abstracts, MIT, 2005. Дата обращения: 23 февраля 2016. Архивировано 29 ноября 2014 года.
  4. Johnson (2015), Chapter 11, Section 11.5 Spherical Coxeter groups
  5. Coxeter, Star polytopes and the Schlfli function f(,,) p. 122 2. The Schlfli-Hess polytopes


Литература

Ссылки


Downgrade Counter